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Abstract

An inverse conductionÐradiation problem for simultaneous estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scattering phase function from knowledge of the exit radiation
intensities is presented[ The inverse problem is solved by using the conjugate gradient method to minimize the error
between the calculated exit intensities and the experimental data[ The e}ects of the measurement errors\ the conduction!
to!radiation parameter\ the single scattering albedo\ the scattering phase function\ and the optical thickness on the
accuracy of the inverse analysis are investigated[ The results show that the single scattering albedo and the optical
thickness can be estimated accurately for exact and noisy data[ Estimation of the conduction!to!radiation parameter
and the scattering phase function is more di.cult than that of the single scattering albedo and the optical thickness
because the prediction of the former properties is more sensitive to the measurement errors[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

Nomenclature

an expansion coe.cients for the scattering phase func!
tion
b ðv\ t9\ N0\ a0\ [ [ [ \ aN�ŁT

d direction of descent
`n Chandrasekhar polynomials
I radiation intensity
J objective function
k thermal conductivity
N0 conduction!to!radiation parameter
N� order of the scattering phase function
n¹ refractive index
Pn Legendre polynomials
p scattering phase function
Qr dimensionless radiative heat ~ux
qr radiative heat ~ux
T temperature
T0 temperature at t � 9
T1 temperature at t � t9

Y measured dimensionless exit radiation intensities at
the surface t � 9
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y coordinate
Z measured dimensionless exit radiation intensities at
the surface t � t9[

Greek symbols
b extinction coe.cient
b¹ step size
g conjugate coe.cient
z random variable
u dimensionless temperature
u� dimensionless boundary temperature
m direction cosine
j eigenvalues
s standard deviation
s¹ StefanÐBoltzmann constant
t optical coordinate
t9 optical thickness
c dimensionless radiation intensity
v single scattering albedo
9J gradient of the objective function
9c sensitivity coe.cient vector[

Superscripts
k kth iteration
T transpose[
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0[ Introduction

Inverse problems are important in the _eld of heat
transfer[ The inverse analysis provides a great advantage
in many engineering applications where direct measure!
ments of the desired quantities are not possible[ They
have been used extensively to determine crucial par!
ameters in conduction\ convection\ and radiation[ In the
inverse heat conduction problems\ the surface conditions
such as temperature and heat ~ux or the thermal proper!
ties such as thermal conductivity and heat capacity of a
material are estimated by utilizing the temperature
measurements inside the medium[ The problems are
known as ill!posed\ so that the estimation is very sensitive
to the measurement errors of the input data[ Various
methods have been developed to solve the inverse heat
conduction problems\ e[g[\ the function speci_cation
method ð0Ł\ the regularization method ð1Ł\ the conjugate
gradient method with adjoint equation ð2Ł\ and the mol!
li_cation method ð3Ł[ Several texts have been devoted to
this topic of research ð4Ð6Ł[ The inverse radiation prob!
lems have also been investigated extensively[ They are
mainly concerned with the determination of the radiative
properties such as the single scattering albedo\ the optical
thickness\ and the scattering phase function ð7Ð02Ł\ or the
internal temperature pro_le ð03Ð05Ł of a medium from
the measured radiation data[ A comprehensive survey of
the inverse radiation problems has been given by McCor!
mick ð06Ð08Ł[ There are many engineering applications
where both conduction and radiation are important\ e[g[\
_brous insulation and glass manufacture[ Under such
circumstances\ the inverse combined conduction and
radiation problems are encountered[ However\ only a
limited amount of work is available on this topic[ Silva
Neto and Ozisik ð19Ł used the LevenbergÐMarquardt
method to estimate the optical thickness\ the single scat!
tering albedo\ and the thermal conductivity of a semi!
transparent plane!parallel medium[ The estimation was
based on simulated transmitted exit radiation intensities
and interior temperatures of the medium[ Man!
ickavasagam and Menguc ð10Ł employed the LevenbergÐ
Marquardt algorithm to estimate the optical thickness
and the radiationÐconduction parameter of a one!dimen!
sional plane!parallel medium from the input temperature
data measured inside the medium[ Ruperti et al[ ð11Ł
estimated the surface temperatures and ~uxes from simu!
lated transient temperatures measured inside a one!
dimensional semi!transparent slab[ A space!marching
technique is adopted to solve the problem[

In the present paper\ an inverse conductionÐradiation
problem for simultaneous estimation of the single scat!
tering albedo\ the optical thickness\ the conduction!to!
radiation parameter\ and the scattering phase function of
a plane!parallel medium from the measured exit radiation
intensities is considered[ The governing equations for
the direct problem will be introduced _rst[ The inverse

analysis will then be considered[ Test cases will be pre!
sented to discuss the e}ects of the measurement errors\
the conduction!to!radiation parameter\ the single scat!
tering albedo\ the scattering phase function\ and the
optical thickness on the estimation[

1[ Direct problem

Consider steady!state combined conduction and radi!
ation heat transfer in a grey\ absorbing\ emitting\ and
anisotropic scattering slab of optical thickness t9\ with
transparent boundaries and subjected to isotropic inci!
dent radiation at the boundary t � 9[ The boundary sur!
faces are kept at speci_ed constant temperatures T0 and
T1\ respectively[ The dimensionless form of the energy
equation can be expressed as ð12Ł

d1u

dt1
−

0
N0

dQr

dt
� 9 "0a#

with the boundary conditions

u � 0 at t � 9 "0b#

u � u� at t � t9 "0c#

where u � T:T0 is the dimensionless temperature\
u� �T1:T0 is the dimensionless boundary temperature\
t � by is the optical coordinate\ N0 � kb:3n¹1s¹T2

0 is the
conduction!to!radiation parameter\ and Qr � qr:3n¹1s¹T3

0

is the dimensionless radiative heat ~ux[ The derivative of
the dimensionless radiative heat ~ux is determined from
the solution of the equation of radiative transfer[ The
equation of radiative transfer in dimensionless form is
given by ð12Ł

m
1c"t\ m#

1t
¦c"t\ m# � "0−v#u3"t#

¦
v

1 g
0

−0

p"m\ m?#c"t\ m?# dm? "1a#

c"9\ m# � 0 m × 9 "1b#

c"t9\ −m# � 9 m × 9 "1c#

where c � pI:n¹1s¹T3
0 is the dimensionless radiation inten!

sity\ m is the cosine of the angle between the t coordinate
and the direction of the radiation intensity\ v is the single
scattering albedo\ and p"m\ m?# is the scattering phase func!
tion\ which is expressed in terms of the Legendre poly!
nomials

p"m\ m?# � s
N�

n�9

anPn"m#Pn"m?# with a9 � 0[ "1d#

Equations "0# and "1# provide the complete mathematical
formulation for the one!dimensional steady!state com!
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bined conduction and radiation[ The solution of the
equation of radiative transfer is obtained by the PN

method[ In this approximation\ the dimensionless radi!
ation intensity is expressed in the form ð13Ł

c"t\ m# � s
N

n�9

1n¦0
1

Pn"m# s
J�

j�0

×ðAj e"−t:jj#¦"−0#nBj e"−"t9−t#:jj#Ł`n"jj#¦8p"t\ m# "2#

where J� � "N¦0#:1\ N is an odd integer\ `n"j# are the
Chandrasekhar polynomials determined from the recur!
rence formula

"n¦0#`n¦0"j# � hnj`n"j#−n`n−0"j# "3#

for n � 9\ 0\ [ [ [ \N\ with `9"j# � 0 and hn � 1n¦0−van[
The eigenvalues jj\ j � 0\ 1\ [ [ [ \ J�\ are the J� positive
solutions of the following eigenvalue problem]

n"n−0#
hnhn−0

`n−1"j#¦
0
hn $

"n¦0#1

hn¦0

¦
n1

hn−0% `n"j#

¦
"n¦1#"n¦0#

hn¦0hn

`n¦1"j# � j1`n"j# "4#

for n � 9\ 1\ 3\ [ [ [ \N−0[ 8p"t\ m# is a particular solution
of equation "1a# corresponding to the inhomogeneous
term "0−v#u3"t# and it is determined from ð14Ł

8p"t\ m# � s
N

n�9

1n¦0
1

Pn"m#

× s
J�

j�0

cj

jj $g
t

9

"0−v#u3"t?# e"−"t−t?#:jj# dt?

¦"−0#n g
t9

t

"0−v#u3"t?# e"−"t?−t#:jj# dt?% `n"jj# "5#

where

cj � $ s
J�

n�0

`1
1n−1"jj#h1n−1%

−0

[ "6#

The constants Aj and Bj are determined by requiring
the solution given by equation "2# to satisfy the Marshak
boundary conditions

s
N

n�9

1n¦0
1

Sa\n s
J�

j�0

ðAj¦"−0#nBj e"−t9:jj#Ł `n"jj#

� Sa\o− s
N

n�9

"−0#n
1n¦0

1
Sa\n s

J�

j�0

cj

jj

`n"jj#

×g
t9

9

"0−v#u3"t?# e"−t?:jj# dt? "7#

and

s
N

n�9

1n¦0
1

Sa\n s
J�

j�0

ð"−0#nAj e"−t9:jj#¦BjŁ`n"jj#

� − s
N

n�9

"−0#n
1n¦0

1
Sa\n s

J�

j�0

cj

jj

`n"jj#

×g
t9

9

"0−v#u3"t?# e"−"t9−t?#:jj# dt? "8#

for a � 9\ 0\ [ [ [ \ "N−0#:1\ where

Sa\n � g
0

9

P1a¦0"m#Pn"m# dm[ "09#

Once Aj and Bj are available\ the dimensionless exit radi!
ation intensities at t � 9 and t � t9\ and the derivative
of the dimensionless radiative heat ~ux are calculated
from ð13Ł

c"9\ −m# � s
N

n�9

"−0#n
1n¦0

1
Pn"−m# s

J�

j�0

cj

jj

`n"jj#

×g
t9

9

"0−v#u3"t?# e"−t?:jj# dt?−e"−t9:m# s
N

n�9

1n¦0
1

×Pn"−m# s
J�

j�0

cj

jj

`n"jj#g
t9

9

"0−v#u3"t?# e"−"t9−t?#:jj# dt?

¦
v

1
s
N

n�9

anPn"m# s
J�

j�0

jj $"−0#nAj

0−e"−t9:m# e"−t9:jj#

m¦jj

¦Bj

e"−t9:m#−e"−t9:jj#

m−jj % `n"jj# m × 9 "00#

c"t9\ m# � e"−t9:m#¦ s
N

n�9

1n¦0
1

Pn"m# s
J�

j�0

cj

jj

`n"jj#

×g
t9

9

"0−v#u3"t?# e"−"t9−t?#:jj# dt?

−e"−t9:m# s
N

n�9

"−0#n
1n¦0

1
Pn"m# s

J�

j�0

cj

jj

`n"jj#

×g
t9

9

"0−v#u3"t?# e"−t?:jj# dt?¦
v

1
s
N

n�9

anPn"m# s
J�

j�0

×jj$Aj

e"−t9:m#−e"−t9:jj#

m−jj

¦"−0#nBj

0−e"−t9:m# e"−t9:jj#

m¦jj %`n"jj#

m × 9 "01#

and

dQr

dt
� "0−v#6u3"t#−

0
1

s
J�

j�0

"Aj e"−t:jj#¦Bj e"−"t9−t#:jj##
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−
"0−v#

1
cj

jj $g
t

9

u3"t?# e"−"t−t?#:jj# dt?

¦g
t9

t

u3"t?# e"−"t?−t#:jj# dt?#%7 [ "02#

The solution of the energy equation is determined by
the _nite di}erence method[ The physical domain is div!
ided into M�¦0 points with mesh size Dt � t9:M�[ The
_nite di}erence form of the energy equation is

ui−0−1ui¦ui¦0

"Dt#1
−

0
N0 0

dQr

dt 1i

� 9 i � 0\ 1\ [ [ [ \ M�−0

"03a#

with the boundary conditions

u9 � 0 "03b#

uM� � u�[ "03c#

An iterative process is needed in solving the energy equa!
tion and the equation of radiative transfer[ A temperature
pro_le is _rst assumed\ and the equation of radiative
transfer is solved for the radiation intensity and the
derivative of the radiative heat ~ux[ The energy equation
is solved next for a new temperature pro_le[ These two
temperature pro_les are compared[ The process is con!
tinued until a speci_ed convergent criterion is achieved[

2[ Inverse problem

In the direct problem\ the thermal properties v\ t9\ N0\
and an are given to determine the temperature distribution
and the radiation intensity[ In the inverse problem\ the
exit radiation intensities are assumed to be measured and
the parameters v\ t9\ N0\ and an are recovered by using
the measured data[ The estimation of the single scattering
albedo\ the optical thickness\ the conduction!to!radiation
parameter\ and the scattering phase function from the
knowledge of the exit radiation intensities measured at
di}erent directions can be constructed as a problem of
minimization of the objective function

J � s

M0

i�0

ðc"9\ −mi^ b#−Y"−mi#Ł1¦ s

M1

i�0

ðc"t9\ mi^ b#−Z"mi#Ł1

"04#

where c"9\ −mi^ b# and c"t9\ mi^ b# are the calculated
dimensionless exit radiation intensities at t � 9 and
t � t9\ respectively\ for an estimated vector b �
ðv\ t9\ N0\ a0\ [ [ [ \ aN�ŁT^ Y"−mu# and Z"mi# are the
measured dimensionless exit radiation intensities at t � 9
and t � t9\ respectively[

In this study\ the conjugate gradient method is

employed to solve the inverse conductionÐradiation
problem[ The iterative process is ð15Ł

bk¦0 � bk−b¹ kdk "05#

where b¹ k is the step size\ dk is the direction of descent
which is determined from

dk � 9JT"bk#¦gkdk−0 "06#

and the conjugate coe.cient gk is computed from

gk �
9J"bk#9JT"bk#

9J"bk−0#9JT"bk−0#
with g9 � 9[ "07#

Here the row vector

9J � $
1J
1v

\
1J
1t9

\
1J

1N0

\
1J
1a0

\ [ [ [ \
1J

1aN�% "08#

is the gradient of the objective function[ The step size is
determined from

b¹k �6s

M0

i�0

ðc"9\−mi^bk#−Y"−mi#Ł9c"9\−mi^bk#dk

¦s

M1

i�0

ðc"t9\mi^bk#−Z"mi#Ł9c"t9\mi^bk#dk7

>6s

M0

i�0

ð9c"9\−mi^bk#dkŁ1¦s

M1

i�0

ð9c"t9\mi^bk#dkŁ17 "19#

where 9c is the sensitivity coe.cient vector

9c � $
1c

1v
\
1c

1t9

\
1c

1N0

\
1c

1a0

\ [ [ [ \
1c

1aN�%[ "10#

The component of the sensitivity coe.cient vector
de_ned as the _rst derivative of the dimensionless radi!
ation intensity with respect to the unknown parameter is
determined by the _nite di}erence method

1c

1bj

3
c"b9\ b0\ [ [ [ \ bj¦Dbj\ [ [ [ \ bM#

Dbj

"11#

for j � 9\ 0\ [ [ [ \M[ A large component of the sensitivity
coe.cient vector indicates that the dimensionless radi!
ation intensity is sensitive to changes in that parameter\
while a small component implies that the dimensionless
radiation intensity is insensitive to changes in that par!
ameter[ The gradient of the objective function is deter!
mined by di}erentiating equation "04# with respect to bj

to obtain

1J
1bj

� 1 s

M0

i�0

ðc"9\ −mi^ b#−Y"−mi#Ł
1c"9\ −mi^ b#

1bj



H[Y[ Li:Int[ J[ Heat Mass Transfer 31 "0888# 454Ð461 458

¦1 s

M1

i�0

ðc"t9\ mi^ b#−Z"mi#Ł
1c"t9\ mi^ b#

1bj

"12#

for j � 9\ 0\ [ [ [ \M[
If the problem contains no measurement errors\ the

condition

J"bk¦0# ³ d� "13#

can be used for terminating the iterative process\ where
d� is a small speci_ed positive number[ However\ the
measured radiation intensities contain measurement
errors[ Following the computational experience\ we use
the discrepancy principle ð16Ł

J"bk¦0# ³ "M0¦M1#s1 "14#

as the stopping criterion\ where s is the standard devi!
ation of the measurement errors[

The computational procedure for the solution of the
inverse conductionÐradiation problem can be sum!
marized as follows]

Step 0] Pick an initial guess b9[ Set k � 9[
Step 1] Solve the direct problem to compute the dimen!
sionless exit radiation intensities c"9\ −mi^ bk# and
c"t9\ mi^ bk#[
Step 2] Calculate the objective function[ Terminate the
iteration process if the speci_ed stopping criterion is sat!
is_ed[ Otherwise go to Step 3[
Step 3] Compute the sensitivity coe.cient vector 9c[
Step 4] Knowing 9c\ c"9\ −mi^ bk#\ c"t9\ mi^ bk#\ Y"−mi#\
and Z"mi#\ compute the gradient of the objective function
9J"bk#[
Step 5] Knowing 9J"bk#\ compute the conjugate
coe.cient gk and the direction of descent dk[
Step 6] Knowing 9c\ c"9\ −mi^ bk#\ c"t9\ mi^ bk#\ Y"−mi#\
Z"mi#\ and dk\ compute the step size b¹ k[
Step 7] Knowing b¹ k and dk\ compute bk¦0[ Set k � 9 if
k � M¦0 or k � k¦0 if k � M¦0 and go to Step 1[

3[ Results and discussion

Several test cases are presented to demonstrate the
proposed inverse algorithm for simultaneously esti!
mating the single scattering albedo\ the optical thickness\
the conduction!to!radiation parameter\ and the scat!
tering phase function from the knowledge of the exit
radiation intensities[ The e}ects of the measurement
errors\ the conduction!to!radiation parameter\ the single
scattering albedo\ the scattering phase function\ and the
optical thickness on the results of the inverse analysis
are investigated[ In order to simulate the measured exit
intensities with measured errors\ Y and Z\ random errors
of standard deviation s are added to the exact intensities

computed from the solution of the direct problem[ Thus\
we have

Ymeasured � Yexact¦sz "15#

and

Zmeasured � Zexact¦sz "16#

where z is a random variable with normal distribution\
zero mean and unit standard deviation[ The exit radiation
intensities are measured at the surfaces t � 9 and t � t9\
and 19 measurement points are taken at each surface
over the polar angle interval 9 ¾ u ¾ p:1 for all the cases
considered here[ The data are used as input to reconstruct
the unknown properties from the inverse problem where
the dimensionless boundary temperature u� is taken as
9[0[

In the _rst case\ the single scattering albedo\ the optical
thickness\ and the conduction!to!radiation parameter are
assumed to be 9[4\ 0\ 0\ respectively[ Phase function I ð17Ł
of Table 0 is used for the scattering characteristics of the
medium[ The results of the inverse analysis for both exact
and noisy input data are shown in Fig[ 0[ The estimation
of the inverse problem is excellent for exact input data\
i[e[\ s � 9[ The accuracy of the inverse analysis is also
good for simulated experimental data containing errors
of standard deviation s � 9[991 and s � 9[993[ Increas!
ing s from 9[991 to 9[993\ the accuracy of the estimation
decreases[ It is noted that the estimation for the single
scattering albedo and the optical thickness is less sensitive
to the measurement errors\ while the estimation for the
conduction!to!radiation parameter and the scattering
phase function is more sensitive to the measurement
errors[

Figure 1 is presented to show the e}ects of the con!
duction!to!radiation parameter on the accuracy of the
inverse analysis[ The thermal properties used are the same
as those for Fig[ 0 except in this case N0 � 9[0[ The
agreements between the estimated and the exact values
of the single scattering albedo and the optical thickness

Table 0
The expansion coe.cients for the scattering phase functions

Phase function I Phase function II

n an an

9 0 0
0 −0[1 9[73553
1 9[4 9[92524
2 −9[93366
3 9[22256
4 9[02616
5 9[91741
6 9[99242
7 9[99916
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Fig[ 0[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scat!
tering phase function for v � 9[4\ t9 � 0\ N0 � 0\ phase function
I\ u� � 9[0[

Fig[ 1[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scat!
tering phase function for v � 9[4\ t9 � 0\ N0 � 9[0\ phase func!
tion I\ u� � 9[0[

are very good[ The estimation of the conduction!to!radi!
ation parameter and the scattering phase function is more
di.cult than that of the single scattering albedo and the
optical thickness[ It is due to the fact that the components
of the sensitivity coe.cient vector for the single scattering
albedo and the optical thickness are much larger than
those for the conduction!to!radiation parameter and the
scattering phase function[

Fig[ 2[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scat!
tering phase function for v � 9[7\ t9 � 0\ N0 � 0\ phase function
I\ u� � 9[0[

Figures 2 and 3 are intended to demonstrate the e}ects
of the single scattering albedo on the estimation[ The
values of the single scattering albedo are 9[7 and 9[1 for
Figs 2 and 3\ respectively\ and other properties are the
same as those for Fig[ 0[ The prediction of the properties
is acceptable[ Again\ the estimations for the conduction!
to!radiation parameter and the scattering phase function
are more sensitive to the measurement errors[

Figure 4 shows the results of the inverse analysis for a
medium with single scattering albedo 9[4\ optical thick!
ness 0\ conduction!to!radiation parameter 0\ and phase

Fig[ 3[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!parameter\ and the scattering phase
function for v � 9[1\ t9 � 0\ N0 � 0\ phase function I\ u� � 9[0[
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Fig[ 4[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scat!
tering phase function for v � 9[4\ t9 � 0\ N0 � 0\ phase function
II\ u� � 9[0[

function II ð12Ł of Table 0[ The accuracy of the estimation
for simulated experimental data with s � 9\ s � 9[991
and s � 9[993 is good[ Comparing Fig[ 4 with Fig[ 0\ it
is noted that the estimated results are satisfactory for
both forward scattering and backward scattering media[

The e}ects of the optical thickness on the inverse analy!
sis are shown in Fig[ 5[ The properties used are the same
as those for Fig[ 0 except in this case t9 � 4[ The accuracy
of the estimation for the single scattering albedo and the

Fig[ 5[ Estimation of the single scattering albedo\ the optical
thickness\ the conduction!to!radiation parameter\ and the scat!
tering phase function for v � 9[4\ t9 � 4\ N0 � 0\ phase function
I\ u� � 9[0[

optical thickness is very good[ The estimation of the
conduction!to!radiation parameter and the scattering
phase function is more di.cult than that of the single
scattering albedo and the optical thickness because the
prediction of the former properties is more sensitive to
the measurement errors[

4[ Conclusions

The inverse conductionÐradiation problem for sim!
ultaneous estimation of the single scattering albedo\ the
optical thickness\ the conduction!to!radiation parameter\
and the scattering phase function from the knowledge of
the exit radiation intensities has been considered[ The
conjugate gradient method is adopted to solve the prob!
lem[ Both exact and noisy data have been used to dem!
onstrate the inverse algorithm[ The results show that the
single scattering albedo and the optical thickness can be
estimated accurately for both exact and noisy data[ The
estimation of the conduction!to!radiation parameter and
the scattering phase function is more di.cult and is more
sensitive to the measurement errors[ The inverse method
developed in this paper can be extended for non!grey\
inhomogeneous radiative heat transfer models and gen!
eral boundary conditions[
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